

PRODUCT DATASHEET

Gas Discharge Tubes

Applications

- Communication equipment
- CATV equipment
- Test equipment
- Data lines
- Power supplies
- Telecom SLIC protection
- Telecommunications

Description -

Gas discharge tubes (GDT) use noble gasses enclosed in ceramic tubes to provide an alternate circuit path for voltage spikes. The ceramic envelope and with nickel connectors allow for high loads. The breakdown voltages of the devices have a wide range (up to 20% olerance). Major applications are high requency telecommunication lines, stations, security systems, HID and high quality Surge Protection Devices.

Features -

- RoHS & HF compliant
- Low Capacitance
- Micro-Gap Design
- Stable breakdown voltage
- · High insulation resistance
- High holdover voltage
- Large absorbing transient current capability

Electriacl Characteristics

Part No.	DC Spark-over Voltage 100V/S(V)	Max.Impulse Spark-over Voltage 1KV/μs(V)	Nominal Discharge Current(L) 1s,50Hz(A)	Nominal Impulse Discharge Current 8x20µs(kA)	Insulation Resistance min. (GΩ)/ (Vdc)	Max. Capacitance C 1MHz(pF)
JTS35-075	75±30%	600	5	5	1GΩ/50Vdc	1
JTS35-090	90±20%	600	5	5	1GΩ/50Vdc	1
JTS35-150	150±20%	600	5	5	1GΩ/50Vdc	1
JTS35-200	200±20%	700	5	5	1GΩ/100Vdc	1
JTS35-230	230±20%	700	5	5	1GΩ/100Vdc	1
JTS35-250	250±20%	700	5	5	1GΩ/100Vdc	1
JTS35-350	350±20%	1000	5	5	1GΩ/100Vdc	1
JTS35-420	420±20%	1000	5	5	1GΩ/100Vdc	1
JTS35-470	470±20%	1200	5	5	1GΩ/100Vdc	1
JTS35-500	500±20%	1200	5	5	1GΩ/100Vdc	1
JTS35-600	600±20%	1400	5	5	1GΩ/100Vdc	1

Electrical Performance

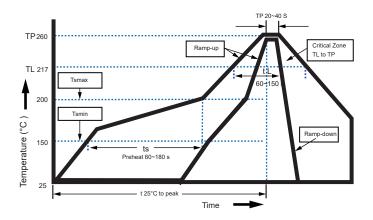
Item	Testing condition and method	Performance
DC Spark-over	Measure starting discharge voltage (Vs) by gradualy increasing applied	Meet specified
Voltage(Vs)	DC voltage.Test current is 1mA max. and test period is 1 second max.	value
	and the DC voltage ascend up within 100v/second.	
	Measure the insulation resistance across the terminal at regulated voltage	
Insulation	But The test voltage doesn't over the DC spark-over voltage with	1GΩ or over
	50Vdc/100Vdc.	
Resistance(IR)	Measure the electrostatic capacitance by applying a voltage of less than	1pF or less
Capacitance	6V(at 1MHz) between terminals.	

The testing condition shall be subject to the following items:

- 1. Ambient Temp.:-40°C~125°C; Relative Humidity:<95%(40°CH);
- 2. Atmospheric Pressure 8.6×10⁴Pa~1.06×10⁴Pa.

Physical and Solderability Characteristics

Item	Testing condition and method	Performance
	Specimens shall be soldered to testing board. The substrate shall be supported	No evidence of
Bending	at two points 45 mm from its center with mounting surface, and the middle part	mechanical damage ,
strength	of its board shall be pressed at rate of 1.0 mm per second until the deflection	Meet specified value.
	becomes 3 mm and then the pressure shall be maintained for 30 seconds.	
Terminal	Specimens shall be soldered to testing board. Then apply force in parallel	No evidence of
Strength	- 2 kg 30 second hanging.	mechanical damage
		,Meet specified value.
	After dipping the lead wire to a depth of 2mm from the body in a soldering bath	Over 95% of the lead
Solderability	of 260±5°C for 10±1 sec.	wire should be covered
		with new solder.
Resistance to	After dipping the lead wire to a depth of 2mm from the body in a soldering bath	Meet DC spark-over
soldering heat	of 260±5°C for 10±1 sec.	voltage tolerance.

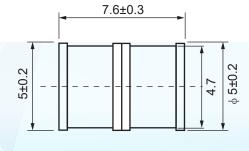


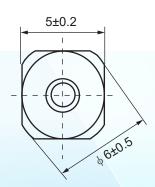
Environmental Characteristics

Item	Testing condition and method				Performance	
Resistance to cold	The specimen shall be subjected to - 55±3°C for 1000 hours without load and then stored at room temperature and humidity for 4 hours.					Meet specified value.
Resistance to heat	The specimen shall be subjected to 125±2°C for 1000 hours without load and then stored at room temperature and humidity for 4 hours. Meet specified value.					
Resistance to humidity	The specimen shall be subjected to 85±2°C 85%R.H.for 1000 hours without load and then stored at room temperature and humidity for 4 hours. Meet specified value.					
Surge life	Apply a impulse current (8/20µs of 5KA) (a+b-E)for 10 times at 60 seconds intervals, Thereafter, the characteristics of times Vs,IR and C shall be measured (EN61000-4-5). No cracks or failures after applying current					
Heat cycle	Repeat the temperatur temperature and humid Step Temperature Perild	dity for 4 houi		3 125±2°C 30min	ore parts at room 4 Room Temp 30min	Meet specified value
Temperature range	Operating temp range :-55°C to +125°C Storage temp range :-40°C to +85°C					

Soldering Parameters

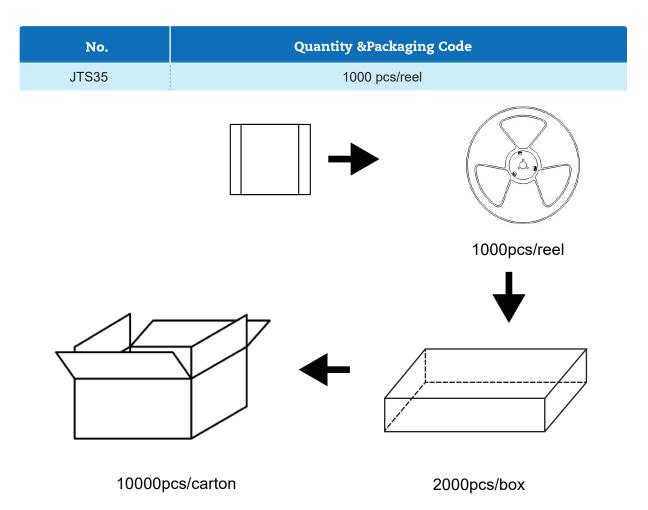
- Recommended reflow methods: IR, vapor phase oven, hot air oven, N2 environment for lead-free.
- Recommended maximum paste thickness is 0.25mm
 Devices can be cleaned using standard industry methods and solvents.
- Note 1:All temperature refer to topside of the package, measured on the package body surface.
- Note 2: If reflow temperatures exceed the recommended profile, devices may not meet the performance requirements.


Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate	3°C/second mac.
(Ts max to T p)	
Preheat	
-Temperature Min(Ts min)	150°C
-Temperature Max(Ts max)	200°C
-Time(Ts min to Ts max)	60~180 seconds
Time maintained above:	
-Temperature(TL)	217°C
-Time(tL)	60~150 seconds
Peak Temperature(Tp)	260°C
Ramp-Down Rate	6°C/second max.
Time 25°C to Peak Temperate	ure 8 minutes max


Storage And Handling:

Storage conditions 0°C~ 35°C,30% ~60%R.H. Devices may not meet specified performance if storage conditions are exceeded.

Dimensions and Structure


Unit: mm

Packaging

Part Number System

